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Abstract: Photonics based pre-clinical imaging is an extensively used technique to allow
for the study of biologically relevant activity typically within a small-mouse model. Namely,
bioluminescent tomography (BLT) attempts to tomographically reconstruct the 3-dimensional
spatial light distribution of luminophores within a small animal given surface light measurements
and known underlying optical parameters. Often it is the case where these optical parameters are
unknown leading to the use of a ‘best’ guess approach or to direct measurements using either a
multi-modal or dedicated system. Using these conventional approaches can lead to both inaccurate
results and extending periods of imaging time. This work introduces the development of an
algorithm that is used to accurately localize the spatial light distribution from a bioluminescence
source within a subject by simultaneously reconstructing both the underlying optical properties
and source spatial distribution and intensity from the same set of surface measurements. Through
its application in 2- and 3-dimensional, homogeneous and heterogenous numerical models, it is
demonstrated that the proposed algorithm is capable of replicating results as compared to ‘gold’
standard where the absolute optical properties are known. Additionally, the algorithm has been
applied to experimental data using a tissue mimicking block phantom, recovering a spatial light
distribution that has a localization error of ∼1.53 mm, which is better than previously published
results without the need of assumptions regarding the underlying optical properties or source
distribution.
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citation, and DOI.

1. Introduction

Pre-clinical photonics based imaging is a powerful non-invasive technique that is used widely to
obtain biologically relevant information. An example of this is Bioluminescent Imaging (BLI),
where light from distributed biological visible and near-infrared luminophores are detected
at the surface of a subject [1]. BLI has been shown to have a variety of useful applications,
including detecting and visualizing functional activity within live animals, as well as tracking
cells around the body of the animal to uncover potential sanctuary sites such as the brain [2].
The signal measured in BLI is the result of a luciferase-catalyzed reaction which increases within
the first minutes, remaining constant for ∼40 minutes [3], therefore giving a safe timeframe for
imaging within ∼20 minutes after the luciferin injection [4]. The reactions used in BLI typically
provide a low output of bioluminescent photons, however are highly specific leading to very
little background signal. Current limitations of BLI include poor spatial resolution, poor depth
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sampling and low quantitative accuracy which is due to the often low signal intensities, non-linear
signal attenuation and the unknown underlying tissue optical parameters.
When requiring to move to a more quantitative measurement, a method can be employed to

allow for the recovery of spatially resolved tomographic maps of the source location and intensity,
known as bioluminescent tomography (BLT) [5]. BLT utilizes a ‘forward’ model of light
propagation within an optically diffuse medium, along with an optimization recovery ‘inversion’
algorithm to accurately reconstruct both the spatial and intensity distribution of the underlying
light source. A number of issues arise when attempting to carry out BLT, namely non-uniqueness
[6] which is countered through the collection of multi-spectral data. Further issues arise, such as
time required to collect multi-spectral data through the use of a filter based system [1] and direct
limitations as a result of the effect of bandwidth when using optical filters [7]. These have been
previously addressed, through the use of a newly developed hyperspectral imaging system based
off compressive sensing, which utilizes a novel method of collecting random projections of an
imaging scene using a digital micro-mirror display (DMD) in conjunction with a spectrometer,
details of which can be found elsewhere [8].
One of the main limitations that has often been largely ignored is the need for accurate

measurements of the underlying optical parameters of the tissue being imaged [9]. Previous
work has aimed at accounting for signal attenuation through the use of multi-modal systems
that incorporate techniques such as diffuse optical tomography (DOT) to non-invasively obtain
the molecular chromophore concentrations as well as spectrally and spatially resolved optical
parameters [1]. By using such a system issues arise, mainly through the time required to collect
the data through the use of spectral filters along with a high spatially resolved CCD camera. To
date a number of strategies both experimental and computational have been employed to improve
the accuracy of BLT, including the use of computational models that incorporate permissible
regions into the reconstructions. These permissible regions can be defined in multiple ways, for
example setting values outside of a specific region to 0 [10], using iterative methods to reduce the
area of the permissible region [11], and using structural information gained from other imaging
modalities such as MRI [12], CT [13] and ultrasound [14] to improve the reconstruction quality.
All of these methods, through either using a multi-modal system or through the use of permissible
regions have been shown to significantly improve the accuracy of the results, quoted to be up to
25% in certain cases [14].
Here a novel algorithm is presented, allowing for the simultaneous recovery of chromophore

concentrations and optical parameters to aid with accurate localization of the underlying spatial
bioluminescence source distribution. This is achieved directly using the same hyperspectral data
from the bioluminescence source that can be collected using a hyperspectral imaging system,
giving the potential for more accurate localization along with a massive reduction in the time
spent collecting data.

2. Theory

When developing the methodology and framework for data collection as used in this work, a
number of existing algorithms need to be considered. Firstly, a method for obtaining surface
fluence data needs to be created. This is done through the use of a compressive sensing (CS)
based hyperspectral imaging system as previously described [8], where the premise is to utilize
a digital micro-mirror device (DMD) and a spectrometer to collect the spectral data from a
sequence of random projections of a scene. By doing this, a set of wavelength dependent linear
measurements are built up such that:

yλ1
...

yλi

= Θ

xλ1
...

xλi

, (1)
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where yλ is a M×1 vector of linear compressed measurements at a given wavelength λ, Θ is an
M×N matrix that represents the random patterns displayed on the DMD and xλ. is the original
N×1 surface signal that is to be recovered. Taking into account the sparsity present in the signals
being measured, it is psible to capture all of the required information to fully represent the
original signal with M<N linear measurements [15]. Typically, the correct solution can be found
by minimizing the L1 norm of xλ by constructing the linear convex optimization problem:

min‖xλ‖1 such that Θxλ = yλ. (2)

This problem can be solved through the use of many different computation algorithms such as
primal dual methods [16], Nesterov’s method [17] and conjugant gradient methods [18]. In the
case where it is assumed that instead of measuring a sparse signal, the underlying gradient of
the image is sparse, which is highly applicable to BLT and BLI, the signal can be recovered
by minimizing the total variation (TV) of the signal. This is done by solving a similar linear
optimization problem:

min
∑

i
‖wi‖, such that Θxλ = yλ; Dixλ = wi, (3)

where Dixλ is the discrete gradient of xλ at pixel i. TV regularisation has been used since its
introduction in 1992 in image denoising [19], image deconvolution [20] and image restoration
[21]. Minimizing the TV of a signal is a much more computationally difficult process than
standard L1 – norm regularisation due to its non-differentiability and non-linearity. One method of
working around this is by rewriting the constrained problem as a new sequence of unconstrained
sub-problems. This method is used within the total variation minimisation by augmented
Lagrangian and alternating direction algorithm (TVAL3) [22–24], which has been utilized in this
work and extensively detailed elsewhere [25].

The second problem concerns finding a method of tomographically reconstructing the spatial
light distribution from the measured surface fluence data as well as the underlying optical
parameters of the subject. Recovering the spatial distribution of the bioluminescence source can
be achieved by modelling the problem as a system of linear equations Jb = y, where J is a matrix
known as the Jacobian, which defines how a small change in source distribution b. affects the
boundary data measured. Solving this system of linear equations has been shown previously [18]
through the implementation of a conjugate gradient approach and is applied in this work through
an algorithm known as compressive sensing conjugate gradient (CSCGNW). The conjugant
gradient approach solves a number of sub-problems with reducing values of a sparsity weight
which converges towards the correct solution, the mathematics and implementation of which
have previously been extensively covered [18].

The ultimate algorithm needed to complete the entire framework is one that calculates both the
optical properties, given the surface fluence data at multiple wavelengths, as well as the location of
the source within the subject. The first (unknown optical properties) is a commonly used imaging
technique known as diffuse optical tomography (DOT), named due to the fact that the transport
of light through tissue at wavelengths in the visible and near infrared (NIR) bands become near
isotropic, therefore is well defined by photon diffusion. A software package, Near infrared
fluorescence and spectral tomography (NIRFAST) [26], was developed to allow for the simulation
of light propagation within biological tissue using a finite element method (FEM) and is also
well documented elsewhere. Within the package are a number of forward and inverse models,
however a specific spectrally constrained case is utilised in this work. The algorithm has been
modified to take the internal bioluminescence source location and surface fluence data with the
goal of directly estimating the concentrations of oxy-hemoglobin, deoxy-hemoglobin and water,
as well as scattering power and amplitude [27,28]. The assigned chromophore concentrations
can be used to calculate the underlying wavelength dependent absorption coefficient of tissue
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through the use of extinction coefficients of individual chromophores. This can similarly be done
using the scattering power and amplitude to obtain a corresponding reduced scattering coefficient
at each wavelengths using Mie scattering theory. Using a continuous wave model, the Jacobian is
calculated and then inverted using the Moore-Penrose generalised inverse, which is typically more
suitable towards underdetermined problems [29]. The Moore-Penrose generalized inverse finds
the ‘best fit’ or minimum norm solution to a system of linear equations, the implementation of
which have been extensively detailed elsewhere [26,29]. From this an update in optical properties
is calculated and the entire process is repeated, new boundary data is simulated and compared
with the original data in order to calculate a projection error. This error is then used as a stopping
mechanism for when it is considered that convergence has occurred, typically within 2% change.
Regularization is used alongside the Moore-Penrose generalized inverse with a starting value of
0.1, which is the standard value used as detailed elsewhere [26].
Figure 1 is a flowchart showing the sequence of the new iterative algorithm that has been

developed by utilising all of the algorithms previously described. Firstly, hyperspectral data
is collected using either simulations within NIRFAST or through the collection of real data
using a hyperspectral imaging system as defined above. From this data the desired wavelengths
are selected and surface fluence data is calculated and combined using the TVAL3 algorithm

Fig. 1. A flowchart of the simultaneous source and optical parameter recovery algorithm.
Blue steps represent part of the created algorithm and orange steps represent existing
algorithms being used.
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described above. This data, along with an initial ‘guess’ of underlying optical properties,
tomographic reconstruction of the spatial light distribution is achieved using the CSCGNW
algorithm. A new source position is set and then through the DOT algorithm, using the same
data-set, optical properties of the medium are calculated. From this, if the error conditions have
not yet been met, the optical properties are updated by the average value across the entire mesh or
of a particular pre-defined volume within. Using these updated optical properties, the CSCGNW
algorithm is then used again to reconstruct the new spatial light distribution and whole process is
completed iteratively. As with the inverse problem outlined above a stopping condition is put
in place to stop the algorithm when it is considered to have converged. The stopping criteria is
the same as that used in the DOT algorithm whereby a projection error is calculated between
the original and modelled data using the updated optical properties. The iterative process is
continued until the change in projection error is below a tolerance which is typically set to 2%.
When modelling the new source for the update of optical parameters, two different methods

can be used. Firstly the tomographically reconstructed source is represented as its full-width-half-
maximum (FWHM) and the center of mass is set as the new point source. Another method is to
also represent the reconstructed source as a distributed source, at the recovered FWHM, where
the entire distributed source can then be set as the new update. Doing this gives a more realistic
representation and therefore may result in more accurate results, both methods are investigated as
part of this work.

3. Methods and results

3.1. System and data collection

Figure 2(a) presents the hyperspectral imaging system that was previously developed [8] to collect
measurements from the surface of object of interest. The system contains an optical setup that
consists of two lenses, a digital micro-mirror device (DMD) and a collimator. The first lens is a 2
inch diameter concave objective lens which collects light from the imaging plane and focuses it
through a 1 inch achromatic lens onto the DMD. A Texas Instruments DLP4500NIR DMD is
used, which has a 912 by 1140 array of micro-mirrors that can be individually controlled to be in
either an ‘on’ or ‘off’ position. This allows for randomly generated binary patterns taken from a
Bernoulli distribution, with probability 0.5, to be displayed, resulting in a random projection of
the light from the imaging plane that is incident on the DMD to be directed towards a 1 inch
diameter collimator. A Thorlabs F810SMA-635 air-spaced doublet collimator is used to collect
this light and pass it through a connected optical fiber of core diameter 1000 µm that is directly
connected to a Flame S-VIS-NIR (Ocean Optics) spectrometer. The spectrometer consists of
a 200 µm slit and a Sony ILX511B linear silicon CCD array which allows the spectrometer to
achieve an optical detection range from 350 nm to 1000 nm with a spectral resolution of 0.4 nm.
The entire system and imaging plane are contained in a custom build light-proof housing that
ensures elimination of any background light, increasing the signal-to-noise ratio. To control
the system a MATLAB graphical user interface has been developed to allow for automated
control of both the DMD and spectrometer, once variables such as desired resolution, number of
measurements and acquisition time has been defined.

Figure 2(b) represents an example of an object that can be imaged using the system developed,
this being a tissue mimicking block phantom containing a red LED which is the subject of
Section 3.5. Figure 2(c) represents the hyperspectral data set that is collected by sequentially
collecting the spectral data from a set of random projections of the imaging plane using the
DMD, where each different colored curve is a separate measurement. From this data, the desired
wavelengths and bandwidths (represented by the red dashed lines) are selected and are then fed
into the algorithm to first reconstruct the surface fluence of light on the object, an example of
which can be seen superimposed on Fig. 2(b). The algorithm then continues to calculate both
the optical properties of the object as well as tomographically reconstructing the spatial light
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Fig. 2. (a) The imaging system developed to collect hyperspectral data from the surface
of an object. (b) An example of a tissue mimicking block phantom containing a red light
source of ∼ 630 nm, with the surface fluence at 630 nm superimposed on the top surface. (c)
The hyperspectral data collect from the surface of a block phantom containing a red LED of
∼ 630 nm. Red dashed line represent the typical selected wavelengths for reconstruction,
multicolored solid lines represent an individual measurement taken using the developed
system.
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distribution located within the object utilizing discrete boundary measurements extracted from
the surface. In all cases the reconstructions are based on a threshold of 50% of the maximum
value, i.e. the full width half max.

3.2. 2D numerical experiment

Reconstructions from simulated data using a homogenous 2D circle model were carried out to
initially demonstrate that the algorithm is capable of successfully reconstructing the spatial light
distribution located within the model. The circular mesh had a diameter of 50 mm and a source
of radius 1.5 mm was placed within the model at a depth of 10 mm from the top surface, as can
be seen in Fig. 3(a).

The optical properties and chromophore concentrations of the model were set to that of adipose
[26], being 0.012 mM and 0.005 mM for oxy- and deoxyhemoglobin respectively, 40% water
and a scattering power and amplitude of 0.56 and 1.34 respectively. Data from the light source
was simulated at 4 wavelengths (600 nm, 610 nm, 620 nm and 630 nm) using an array of 20
detectors evenly distributed across the top half of the mesh. Figure 3(b) shows the tomographic
reconstruction of the spatial light distribution using the known optical properties and chromophore
concentrations of the mesh, representing the gold standard method of reconstruction.
For the simultaneous parameter recovery, the initial guesses of optical properties were set to

0.01 mM for both oxy- and deoxyhemoglobin and 40% for water. As a continuous wave method
of calculating the optical properties is currently employed, the scattering parameters are not
included in the update and were therefore set to the ground truth values of 0.56 and 1.34 for
scattering power and scattering amplitude respectively. Figure 3(c) shows the initial tomographic
reconstruction using the set optical parameters, from which the iterative process of calculating
the optical parameter updates and source localization begins. Two methods of representing the
new source for each optical parameter update were used, the first being a point source located
at the center of the reconstruction at FWHM. The second method was representing the new
source as the distribution of the reconstruction at FWHM. This iterative process continues until
the stopping criteria set out in the previous section have been met, being the second iteration
when using a point source and the third iteration when using a distributed source. Figure 3(d)
shows the tomographic reconstruction at the third iteration when the source was modelled as the
whole distributed source at FWHM. As can be seen in Fig. 3(e) the algorithm performs well in
localizing the source, with a localization error of ∼1 mm when using a point source and a better
localization error of ∼ 0.8 mm when using the entire distributed source. The localization error is
a measure of the Euclidean distance between the reconstructed center of mass (COM) and the
known ground truth location, which is defined by:

Lerr =

√
(xg − xr)

2 + (yg − yr)
2 + (zg − zr)

2,

where xg, yg and zg are the Cartesian coordinates of the ground truth location and xr, yr and zr
are the Cartesian coordinates of the reconstructed COM. Figure 3(f) shows the calculated
FWHM as the maximum distance between two nodes of the reconstructed source, which gives
a quantitative measure of the size of the reconstruction. It can be seen that for both methods
the recovered sources are ∼ 3 times that of the ground truth, however, this increased size is also
found when using the gold standard method of reconstruction for when the underlying optical
parameters are known.

3.3. 3D Homogenous numerical mouse model

The second set of simulations carried out were using a homogenous 3Dmouse mesh of dimensions
∼ 90× 40× 30 mm, which is based on the Digimouse model [30]. The optical parameters of
this mesh were set to that of adipose as in the previous example, and a source of diameter 4mm
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Fig. 3. (a) The ground truth location of the light source inside a circle phantom, red arrows
represent detector positions. (b) Tomographic reconstruction using the ground truth optical
parameters. (c) Tomographic reconstruction of the light source using the initial optical
parameter guess. (d) The final tomographic reconstruction of the light source after the error
conditions have been met. (e) The localization error between the center of mass of the light
source at FWHM and the ground truth location and (f) The FWHM of the recovered source.
The red dashed line represents reconstruction carried out with the source modeled as a single
point and the blue dashed line represents reconstruction carried out with the whole source at
FWHM used.
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was placed in the center of the model at a depth of 7.5mm from the top surface, as shown in
Figs. 4(b)–4(c). Surface fluence data from the source was simulated at 4 wavelengths (600
nm, 610 nm, 620 nm and 630 nm) using a 5× 5 detector array as can be seen in Fig. 4(a).
The same process as with the 2D circle example in the previous section was carried out by
first reconstructing the spatial light distribution using an initial guess of optical parameters and
chromophore concentrations, as shown by the top view in Fig. 4(d) and the side view in Fig. 4(g).
The iterative process was then carried out using both methods of representing the new

reconstructed source, as stated in the previous section. Figures 4(e) and 4(h) show the final
reconstruction when the source was represented by a point source centered at the reconstruction
at FWHM, whilst Figs. 4(f) and 4(i) show the final reconstruction when the source is represented
as a distributed source at FWHM. As can be seen in Fig. 4(k), when the new source used for
the optical parameter update is represented as a point source the best reconstruction localization
error obtained is ∼ 2.2 mm. However, when using the distributed source to obtain the new optical
parameters the localization error is much lower at ∼ 1.25 mm. Figure 4(l) shows the calculated
FWHM and is show to be ∼ 8 mm for both methods of reconstruction which is ∼ 2 times that of
the ground truth of 4 mm.

3.4. 3D Heterogeneous numerical mouse model

To demonstrate the use of this algorithm on a more realistic model, the same mouse mesh used in
the previous section was converted into a heterogenous mesh by marking and setting the optical
parameters of 8 separate regions across the mesh to represent different tissue types found in a
mouse, Table 1 [31]. Figure 5(a) shows a top down view of the heterogeneous mouse model with
the different regions of optical parameter shown. A source of diameter 4 mm was then placed in
the center of the model at a depth of 7.5 mm which corresponds to a region that represents the
left kidney of the mouse which can be seen in Figs. 5(b)–5(c). Surface fluence data was then
simulated at 4 wavelengths (600 nm, 610 nm, 620 nm and 630 nm) using the same 5× 5 detector
array that can be seen in Fig. 4(a).

Table 1. The seven different regions that make up the heterogeneous mouse phantom used
along with their corresponding chromophore concentrations and scattering properties [31].

Region

Total
Hemoglobin

(mM)
Oxygen

Saturation (%)

Water
Concentration

(%)
Scatter

Amplitude
Scatter
Power

Adipose 0.0033 70 50 0.98 0.53

Bone 0.0049 80 15 1.4 1.47

Muscle 0.07 80 50 0.14 2.82

Stomach 0.01 70 80 0.97 0.97

Lung 0.15 85 85 1.7 0.53

Kidney 0.0056 75 80 1.23 1.51

Liver 0.3 75 70 0.45 1.05

Pancreas 0.3 75 70 0.45 1.05

The iterative algorithm was then used using initial optical parameters of 0.00231 mM and
0.00099 mM for oxy- and deoxyhemoglobin respectively as can be seen in Figs. 5(d) and 5(g).
The optical parameter updates were calculated using the same two methods of representing the
new source as in the previous sections. During each update, instead of updating the global optical
parameters as a homogenous model as with the previous sections, spatial a priori knowledge
about the different tissues were used. This is achieved by using a priori knowledge of the structure
of the mouse to calculate an average of the reconstructed optical parameter for each region.
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Fig. 4. (a) The homogenous mouse phantom used with the detector positions represented
by crosses. (b – c) A top and side view of the ground truth light source placed within the
phantom. (d – f) The top views of the initial iteration, final iteration using a point source and
final iteration using the whole source reconstructions respectively. (g – i) The side views of
initial iteration, final iteration using a point source and final iteration using the whole source
reconstructions respectively. (j) The colorbar for all reconstructions excluding the ground
truth. (k) The localization error between the center of mass of the light source at FWHM
and the ground truth location and (l) The FWHM of the recovered source. The red dashed
line represents reconstruction carried out with the source modeled as a single point and the
blue dashed line represents reconstruction carried out with the whole source at FWHM used.
The green line represents the ground truth value.
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Fig. 5. (a) The heterogenous mouse phantom used with regions of varying optical parameters 
visible. (b – c) A top and side view of the ground truth light source placed within the phantom. 
(d – f) The top views of the initial iteration, final iteration using a point source and final 
iteration using the whole source reconstructions respectively. (g – i)  The side views of initial 
iteration, final iteration using a point source and final iteration using the whole source 
reconstructions respectively. (j) The colorbar for all reconstructions excluding the ground 
truth. (k) The localization error between the center of mass of the light source at FWHM and 
the ground truth location and (l) The FWHM of the source. The red dashed line represents 
reconstruction carried out with the source modeled as a single point and the blue dashed line 
represents reconstruction carried out with the whole source at FWHM used. The green line 
represents the ground truth value. 

Initial Reconstruction Final (Point Source) Final (Distributed Source) 

Fig. 5. (a) The heterogenousmouse phantom used with regions of varying optical parameters
visible. (b – c) A top and side view of the ground truth light source placed within the
phantom. (d – f) The top views of the initial iteration, final iteration using a point source and
final iteration using the whole source reconstructions respectively. (g – i) The side views
of initial iteration, final iteration using a point source and final iteration using the whole
source reconstructions respectively. (j) The colorbar for all reconstructions excluding the
ground truth. (k) The localization error between the center of mass of the light source at
FWHM and the ground truth location and (l) The FWHM of the source. The red dashed
line represents reconstruction carried out with the source modeled as a single point and the
blue dashed line represents reconstruction carried out with the whole source at FWHM used.
The green line represents the ground truth value.
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Although such structural data is known in this example, in practice either registration to an atlas
may be utilized or structural information from other modalities such as CT [13].

Figures 5(e) and 5(h) show the final tomographic reconstruction of the spatial light distribution
when modelling the source used for the optical parameter update as a point source. Figures 5(f)
and 5(i) show the final tomographic reconstruction of the spatial light distribution when modelling
the source used for the optical parameter update as the whole distributed source at FWHM. It
can be seen in Fig. 5(k) that the calculated localization error of the reconstruction is ∼ 1.3 mm
when a point source is used, whereas a slightly better localization error of ∼ 0.9 mm when the
distributed source is used. The recovered FWHM are displayed in Fig. 5(l) and it can be seen
that a maximum of ∼ 11.4 mm is present when a point source is used whereas a maximum of 4.6
mm is found when the whole distributed source is used for reconstruction, which is much closer
to the ground truth of 4 mm.

3.5. Phantom experimental data

An experiment was carried out to further confirm and demonstrate the capabilities of the proposed
algorithm. The imaged object for this experiment was a tissue mimicking block phantom
(Biomimic, INQ, Quebec, Canada) of dimensions 33× 26× 40 mm. The phantom is made of a
solid homogeneous plastic that has spectrally varying optical absorption and scattering properties.
These properties have been characterized between the 500 to 850 nm and found to range from,
µa = [0.007–0.12] mm−1 and µs´= [1.63–1.79] mm−1 for absorption coefficient and reduced
scattering coefficient respectively [32]. The phantom also contains two tunnels with a diameter
of 6 mm at depths of 5 mm and 15 mm in which rods of matching or varying optical properties
can be inserted to create either a solid homogenous phantom, or a heterogeneous phantom. For
the use in this study, a rod of matching optical properties containing an embedded red LED was
created to allow it to be inserted into either of the channels to mimic an internal light source, such
as a bioluminescent marker. The light source used is a standard 5 mm LED (Arduino) that has a
gaussian like emission spectrum with a central peak at ∼ 620 nm and a full-width-half-maximum
of ∼20 nm.
For this experiment, the light source was placed within the channel at a depth of 5 mm from

the surface. The imaging system shown in Section 3.1 was used to collect a hyperspectral data
set. This was done by displaying a sequence of 50 randomly generated 10× 10 binary patterns,
for each pattern collecting spectral data for 200 ms. From this data, surface fluence images were
reconstructed using a total variation minimizing algorithm (TVAL3) [22] at 4 wavelengths (610
nm, 620 nm, 630 nm and 640 nm), each with a bandwidth of 10 nm. The initial guesses for
chromophore concentrations for this experiment were those of adipose stated in the previous
section being 0.00231 mM and 0.00099 mM for oxy- and deoxyhemoglobin respectively. An
initial tomographic reconstruction of the spatial light distribution, using the surface fluence data
obtained from the system and the initial guesses of chromophore concentrations, can be seen
in Figs. 6(a) and 6(d). The iterative algorithm was then used in order to obtain a solution for
the location of the light source within the tissue mimicking block phantom, using both a point
source and distributed source. Figures 6(b) and 6(e) show the final reconstruction using a point
source model and Figs. 6(c) and 6(f) show the final reconstruction using the distributed source
model. In all parts of Fig. 6 the ground truth location of the light source within the phantom is
represented by the green dashed area.
Table 2 represents the quantitative analysis of the tomographic reconstruction carried out in

this experiment. As can be seen using a point source model, the second iteration was returned
with a localization error of 3.32 mm and a maximum distance observed at FWHM of 3.91 mm.
Compared to a better localization error of 1.53 mm and maximum distance at FWHM of 7.78 mm
using a whole distributed source model, which is of the order ∼ 5 times closer to the ground truth
size of 7 mm. The chromophore concentrations recovered by the algorithm are 0.0532 mM and
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Fig. 6. (a – c) Top view of the initial iteration, final iteration modeling the source as a
single point and final iteration modeling the whole source respectively. (d – f) Side view of
the initial iteration, final iteration modeling the source as a single point and final iteration
modeling the whole source respectively. Green dashed area represents the ground truth
location of the source. Images are thresholded to 50% of the maximum of recovered value.

0.0536 mM for oxy- and deoxyhemoglobin respectively. Taking these values and converting them
to an underlying absorption coefficient gives a range of µa = [0.0592–0.1351] mm−1 between 610
nm and 640 nm, which represents the ground truth values well.

Table 2. Analysis of tomographic reconstructions showing the iteration number returned,
the localization error and maximum distance at FWHM for when the sources where modelled

as both a point source and a distributed source.

Iterations Localization Error (mm) FWHM (mm) Ground Truth Size (mm)

Point Source 2 3.32 3.91 7

Distributed Source 6 1.53 7.78 7

4. Discussions

Current methods of tomographically reconstructing light sources within an object of interest,
for example in bioluminescent tomography, rely on knowing the underlying optical properties
of the object in order to obtain an accurate solution. This can be done through either a priori
information for example from ATLAS based information [33,34] or through the use of multi
modal systems that have the capability of directly measuring such properties [1]. The work in this
paper outlines the development and testing of an algorithm that uses fluence data from an internal
light source at the surface of the object of interest to reconstruct both the source localization
and underlying optical properties of the object simultaneously. Taking advantage of a previously
developed system [8], that is capable of collecting hyperspectral surface fluence data, a number
of simulation and real data experiments were designed in order to test the ability of the algorithm
in finding a correct solution to the problem. By doing this a vast amount of time is saved in data
collection as compared to existing methods as they typically use a manually changed spectral
filter approach in order to build up a multi-spectral dataset.
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The algorithm developed has shown to perform well in localizing the spatial light distribution
present in both 2 and 3-dimensional simulated cases, as well as homogenous and heterogeneous
mouse phantoms. Real experimental data was then tested to see if the outcomes found in
simulations could be replicated in an experimental setting. This was done by collecting
hyperspectral surface fluence data using the system described in Section 3.1 and applying the
algorithm presented to the dataset. To further test the robustness of the algorithm when optical
parameter updates were being calculated, the source location used was modeled as a point source
centered at the reconstructed light distribution at full-width-half-maximum, as well as modelling
the source as the entire spatially distributed light source reconstructed at FWHM. It was found
in all cases that the algorithm performed well at localizing the source distribution as well as
obtaining good volumetric accuracy, especially in the more realistic examples demonstrated in
Sections 3.4 and 3.5.
In order to quantitatively analyze the accuracy of reconstruction, two different metrics were

used. The first being the localization error, which is a measure of the Euclidean distance between
the center of mass of the reconstructed distribution at FWHM and the ground truth location.
The second metric use was the maximum Euclidean distance between nodes present within the
distribution at FWHM, which gives a direct indication of the size of the reconstruction. In the
2D case, good localization was seen with errors of ∼ 1 mm and 0.8 mm for a point source model
and distributed model respectively. A maximum FWHM of 10 mm was found when using both
models, which is ∼ 3 times that of the ground truth, however this increase is also seen when
reconstructing the source using the known ground truth optical parameters. When utilizing
simulations of a 3-dimensional mouse phantom, similar results were seen, with localization
errors of ∼ 2.2 mm and 1.25 mm for when a point source model and distributed source model
was used respectively. The calculated FWHM was found to be ∼ 8 mm for both models, which is
∼ 2 times that of the ground truth. A more realistic example was explored through the use of
a heterogeneous mouse model containing 8 distinct regions of different optical properties that
relate directly to the anatomy of a real mouse. When using a point source model, a localization
error of 1.3 mm was found along with a FWHM of 11.4 mm, which is much larger than the
ground truth value of 4 mm. However, when modeling the update source as the whole distributed
reconstruction, much better accuracy was gained with a localization error of 0.9 mm and a
FWHM of 4.6 mm. These results were mirrored when using real experimental data, with a
localization error of 3.32 mm and maximum distance of 3.91 mm when a point source model
was used. As compared to when a whole distributed source model was used a localization error
of 1.53 mm and a FWHM of 7.78 mm was calculated, being ∼ 5 times closer to the ground truth
value of 7 mm that in the point source model case. When compared to similar data [8], it can be
seen that by using this algorithm for reconstruction, results with much better accuracy can be
observed.

This proposed algorithm is aiming to account for the underlying unknown optical parameters
in order to gain a tomographic reconstruction with improved accuracy and quality. The optical
absorption coefficient recovered for the experiment phantom ranged between µa = [0.0592–0.1351]
mm−1 for the wavelengths used. Although these values match well with the ground truth values
of µa = [0.007–0.12] mm−1, further work is required to look at its biological relevance. When
carrying out tomographic reconstructions using a heterogeneous mouse model (or a real murine
example), the use of a priori knowledge of the structure of the mouse has been utilized. This
allows for the algorithm to account for small areas of high absorption within the mouse, without
the need for directly measuring the optical properties of these regions This information can be
gained using methods such as the permissible regions techniques explained above or through
the use a mouse atlas such as Digimouse [30], to infer the internal structure of the mouse from
measurements of key features on the surface of the mouse.
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Using this new algorithm to tomographically reconstruct spatially distributed internal light
sources, by simultaneously recovering the underlying optical properties and localizing the source
can potentially address a number of issues that typically arise in tomographic imaging, such as
bioluminescent tomography (BLT). The first of which is accounting for the unknown optical
parameters of the subject, which is typically met by directly measuring the optical parameters
using a multi-modal system [1], resulting in a vast increase in data collection time, which is
especially valuable in cases such as BLT where the timeframe of light emission is finite. The
system developed allows for the collection of hyperspectral data without the need of spectral
filters to be used, further giving the potential for the data collection time to be reduced. The
use of a filter-less system also addresses issues that are raised in filter based systems, whereby
the bandwidth of said filters have an effect on measured data [7]. The effective bandwidth
and number of spectral measurements made are limited by only the spectral resolution of the
spectrometer used, therefore can be controlled well and is a topic for future work.

5. Conclusions

This work highlights the development of an algorithm to be used in conjunction with a previously
presented hyperspectral imaging system [8]. The main aim of the algorithm is to achieve better
source localization by simultaneously calculating and updating the underlying optical properties
and tomographically reconstructing the spatial light distribution using an iterative method. The
algorithm has shown to give solutions with good localization accuracy (∼1 mm) with both 2 - and
3 – dimensional simulations using homogenous, heterogenous models as well as real experimental
data from a tissue mimicking block phantom. Good volumetric accuracy was also achieved in
the heterogenous mouse model and experimental data when modeling the updated source as the
whole distributed reconstruction at FWHM. These results have the potential to directly translate
to improvements in data collection times, especially in multi-modal multi-spectral systems where
the underlying optical properties are unknown. It is believed that the algorithms accuracy and
efficiency could be improved further through the use of spectral derivative data, as this has been
shown previously to improve the accuracy of tomographic reconstruction of bioluminescent light
sources [33]. As hyperspectral data is collected with the system presented, it is possible that the
system and algorithm could be utilized to simultaneously collect data from multiple sources of
different wavelengths. Other possible improvements could be gained from the true utilization of
the hyperspectral data by incorporating a much greater number of wavelengths at each stage of
the algorithm and optimizing the bandwidth of data used all of which will be subject of further
investigation.
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